A Convergent O(n) Algorithm for Off-policy Temporal-difference Learning with Linear Function Approximation

نویسندگان

  • Richard S. Sutton
  • Csaba Szepesvári
  • Hamid Reza Maei
چکیده

We introduce the first temporal-difference learning algorithm that is stable with linear function approximation and off-policy training, for any finite Markov decision process, behavior policy, and target policy, and whose complexity scales linearly in the number of parameters. We consider an i.i.d. policy-evaluation setting in which the data need not come from on-policy experience. The gradient temporal-difference (GTD) algorithm estimates the expected update vector of the TD(0) algorithm and performs stochastic gradient descent on its L2 norm. We prove that this algorithm is stable and convergent under the usual stochastic approximation conditions to the same least-squares solution as found by the LSTD, but without LSTD’s quadratic computational complexity. GTD is online and incremental, and does not involve multiplying by products of likelihood ratios as in importance-sampling methods. 1 Off-policy learning methods Off-policy methods have an important role to play in the larger ambitions of modern reinforcement learning. In general, updates to a statistic of a dynamical process are said to be “off-policy” if their distribution does not match the dynamics of the process, particularly if the mismatch is due to the way actions are chosen. The prototypical example in reinforcement learning is the learning of the value function for one policy, the target policy, using data obtained while following another policy, the behavior policy. For example, the popular Q-learning algorithm (Watkins 1989) is an offpolicy temporal-difference algorithm in which the target policy is greedy with respect to estimated action values, and the behavior policy is something more exploratory, such as a corresponding greedy policy. Off-policy methods are also critical to reinforcement-learning-based efforts to model human-level world knowledge and state representations as predictions of option outcomes (e.g., Sutton, Precup & Singh 1999; Sutton, Rafols & Koop 2006). Unfortunately, off-policy methods such as Q-learning are not sound when used with approximations that are linear in the learned parameters—the most popular form of function approximation in reinforcement learning. Counterexamples have been known for many years (e.g., Baird 1995) in which Q-learning’s parameters diverge to infinity for any positive step size. This is a severe problem in so far as function approximation is widely viewed as necessary for large-scale applications of reinforcement learning. The need is so great that practitioners have often simply ignored the problem and continued to use Q-learning with linear function approximation anyway. Although no instances ∗Csaba Szepesvári is on leave from MTA SZTAKI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a convergent off -policy temporal difference learning algorithm in on-line learning environment

In this paper we provide a rigorous convergence analysis of a “off”-policy temporal difference learning algorithm with linear function approximation and per time-step linear computational complexity in “online” learning environment. The algorithm considered here is TDC with importance weighting introduced by Maei et al. We support our theoretical results by providing suitable empirical results ...

متن کامل

Fast Gradient-Descent Methods for Temporal-Difference Learning with Linear Function Approximation

Sutton, Szepesvári and Maei (2009) recently introduced the first temporal-difference learning algorithm compatible with both linear function approximation and off-policy training, and whose complexity scales only linearly in the size of the function approximator. Although their “gradient temporal difference” (GTD) algorithm converges reliably, it can be very slow compared to conventional linear...

متن کامل

Emphatic Temporal-Difference Learning

Emphatic algorithms are temporal-difference learning algorithms that change their effective state distribution by selectively emphasizing and de-emphasizing their updates on different time steps. Recent works by Sutton, Mahmood and White (2015), and Yu (2015) show that by varying the emphasis in a particular way, these algorithms become stable and convergent under off-policy training with linea...

متن کامل

Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation

We introduce the first temporal-difference learning algorithms that converge with smooth value function approximators, such as neural networks. Conventional temporal-difference (TD) methods, such as TD(λ), Q-learning and Sarsa have been used successfully with function approximation in many applications. However, it is well known that off-policy sampling, as well as nonlinear function approximat...

متن کامل

On Convergence of Emphatic Temporal-Difference Learning

We consider emphatic temporal-difference learning algorithms for policy evaluation in discounted Markov decision processes with finite spaces. Such algorithms were recently proposed by Sutton, Mahmood, and White (2015) as an improved solution to the problem of divergence of off-policy temporal-difference learning with linear function approximation. We present in this paper the first convergence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008